Stochastic Estimation \& Probabilistic Robotics

Probability Theory:

Joey Durham
 April 2nd, 2008

Slides adapted from introduction.ppt, originally by Thrun, Burgard, and Fox at probabilistic-robotics.org

Reading Group Schedule

W1: Wed Apr 2	Probability Theory	Joey
W2: Wed Apr 9	Estimation Theory	Kurt
W3: Wed Apr 16	Kalman Filters	
W4: Wed Apr 23	Particle Filters	Paolo
W5: Wed Apr 30	Motion \& Sensor Models	
W6: Wed May 7	Localization	
W7: Wed May 14	Mapping	Alexandre
W8: Wed May 21	Simultaneous Localization \& Mapping	
W9: Wed May 28	Markov Decision Processes	
W10: Wed Jun 4	Data Association/Target Tracking	

Outline

- Probability theory
-Probability density functions
-Gaussian random variables
-Conditional probability
- Bayes formula
- Stochastic processes
- Markov processes and chains
- Bayes filters

Motivation

Key idea:
Explicit representation of uncertainty
using the calculus of probability theory

- Perception = state estimation
- Action = utility optimization

Axioms of Probability Theory

$\operatorname{Pr}(A)$ denotes probability that proposition A is true. Let S be the set of all possible outcomes.

$$
0 \leq \operatorname{Pr}(A) \leq 1
$$

$$
\operatorname{Pr}(S)=1 \quad \operatorname{Pr}(\varnothing)=0
$$

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$

A Closer Look at Axiom 3

$\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)$

Using the Axioms

$$
\begin{array}{rlc}
\operatorname{Pr}(A \vee \neg A) & =\operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(A \wedge \neg A) \\
\operatorname{Pr}(\text { True }) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(\text { False }) \\
1 & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-0 \\
\operatorname{Pr}(\neg A) & = & 1-\operatorname{Pr}(A)
\end{array}
$$

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- $P\left(X=x_{i}\right)$, or $P\left(x_{i}\right)$, is the probability that the random variable X takes on value x_{i}.
$\bullet P\left({ }^{*}\right)$ is called probability mass function.
-A proper pmf satisfies: $\sum_{x} P(x)=1$

Continuous Random Variables

- X takes on values in the continuum.
$\bullet p(X=x)$, or $p(x)$, is a probability density function.

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

-E.g.

Properties of PDFs

- Normalization property

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

-Example: Uniform random variable

$$
p(x)=\left\{\begin{array}{ll}
\frac{1}{(b-a)} & x \in[a, b] \\
0 & \text { elsewhere }
\end{array}\right\}
$$

Expectations and Moments

- Expectation value of a scalar random variable (aka mean or average):

$$
E[x]=\int_{-\infty}^{\infty} x p(x) d x=\bar{x}
$$

-nth moment:

$$
E\left[x^{n}\right]=\int_{-\infty}^{\infty} x^{n} p(x) d x
$$

Variance

-The $2^{\text {nd }}$ central moment is also known as the variance:

$$
\begin{aligned}
& \operatorname{var}(x)=E\left[(x-\bar{x})^{2}\right]=\int_{-\infty}^{\infty}(x-\bar{x})^{2} p(x) d x \\
& \operatorname{var}(x)=E\left[x^{2}\right]-(\bar{x})^{2}=\sigma_{x}^{2}
\end{aligned}
$$

- The square root of the variance, σ, is also called the standard deviation.

Joint Probability

- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

Covariance

-The covariance of two scalar random variables x and y :

$$
\operatorname{cov}(x, y)=E[(x-\bar{x})(y-\bar{y})]=\sigma_{x y}^{2}
$$

Correlation

-The correlation coefficient between x and y :

$$
\rho_{x y}=\frac{\sigma_{x y}^{2}}{\sigma_{x} \sigma_{y}}
$$

- Because of normalization:

$$
\left|\rho_{x y}\right| \leq 1
$$

More on Correlation

-Uncorrelated:

$$
\begin{gathered}
\left|\rho_{x y}\right|=0 \\
E[x y]=E[x] E[y]
\end{gathered}
$$

-Linearly dependent:

$$
\begin{gathered}
\left|\rho_{x y}\right|=1 \\
a x+b y=0
\end{gathered}
$$

Joint and Marginal PDFs

- Marginal PDF for one random variable:

$$
p(x)=\int^{\infty} p(x, y) d y
$$

-If a set of random variables are independent, their joint PDF satisfies:

$$
p(x, y)=p(x) p(y)
$$

Random Vectors

- Vector-valued random variable:

$$
x=\left[x_{1} \cdots x_{n}\right]
$$

- Expectation value of x :

$$
E[x]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x p(x) d x_{1} \cdots d x_{n}=\bar{x}
$$

- The covariance matrix of x :

$$
\operatorname{cov}(x)=E\left[(x-\bar{x})(x-\bar{x})^{\prime}\right]=P_{x x}
$$

Characteristic Function

- The characteristic function of x is the ndimensional Fourier transform of its PDF:

$$
M_{x}(s)=E\left[e^{s^{\prime} x}\right]=\int_{-\infty}^{\infty} e^{s^{\prime} x} p(x) d x
$$

-The moments of x can be found using gradients of M_{x} eg:

$$
E[x]=\left.\nabla_{s} M_{x}(s)\right|_{s=0}
$$

-Characteristic function $=$ moment generating function.

Gaussian distributions

-The PDF of a Gaussian or normal random variable:
scalar: $\quad p(x)=N\left(x ; \bar{x}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-\overline{)^{2}}\right.}{2 \sigma^{2}}}$
vector: $\quad p(x)=|2 \pi P|^{-1 / 2} e^{-(1 / 2)(x-\bar{x}) P^{-1}(x-\bar{x})}$

- Has a mean of $E[x]$ and a variance of σ^{2}.

Joint Gaussians

-To variables x and z are jointly Gaussian if:

$$
y=\left[\begin{array}{l}
x \\
z
\end{array}\right] \quad p(x, z)=p(y)=N\left(y ; \bar{y}, P_{y y}\right)
$$

-The mean and covariance of y :

$$
\bar{y}=\left[\begin{array}{l}
\bar{x} \\
\bar{z}
\end{array}\right] \quad P_{y y}=\left[\begin{array}{ll}
P_{x x} & P_{x z} \\
P_{z x} & P_{z z}
\end{array}\right]
$$

Conditional Gaussians

-The conditional PDF for x given z :

$$
p(x \mid z)=\frac{p(x, z)}{p(z)}
$$

-The conditional mean and covariance of x given z :

$$
\begin{aligned}
& E[x \mid z]=\bar{x}+P_{x z} P_{z z}^{-1}(z-\bar{z}) \\
& \operatorname{cov}(x \mid z)=P_{x x}-P_{x z} P_{z z}^{-1} P_{z x}
\end{aligned}
$$

Mixture PDFs

-A mixture PDF is a weighted sum of PDFs:

$$
p(x)=\sum_{j=1}^{n} a_{j} p_{j}(x)
$$

- Mean and covariance of a mixture:

$$
\begin{gathered}
\bar{x}=\sum_{j=1}^{n} a_{j} \bar{x}_{j} \\
\operatorname{cov}(x)=\sum_{j=1}^{n} a_{j} P_{j}+\sum_{j=1}^{n} a_{j} \bar{x}_{j} \bar{x}_{j}{ }^{\prime}-\bar{x} \bar{x}^{\prime}
\end{gathered}
$$

Conditional Probability

$\bullet P(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& P(x \mid y)=P(x, y) / P(y) \\
& P(x, y)=P(x \mid y) P(y)
\end{aligned}
$$

- If X and Y are independent then

$$
P(x \mid y)=P(x)
$$

-The same rules hold for PDFs:

$$
p(x \mid y)=p(x, y) / p(y)
$$

Conditional Expectation

- Conditional expectation, expectation with respect to a conditional PDF:

$$
E[x \mid z]=\int_{-\infty}^{\infty} x p(x \mid z) d x
$$

- Law of iterated expectations:

$$
E[E[x \mid z]]=E[x]
$$

Total Probability Theorem

Discrete case

$$
\sum_{x} P(x)=1
$$

$$
P(x)=\sum_{y} P(x, y)
$$

$$
P(x)=\sum_{y} P(x \mid y) P(y)
$$

$$
p(x)=\int p(x \mid y) p(y) d y
$$

Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
-What is P (open|z)?

Causal vs. Diagnostic Reasoning

- P (open $\mid z$) is diagnostic.
$\bullet P(z \mid o p e n)$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

Example

- $P(z \mid$ open $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$
$P($ open $\mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) P(\text { open })+P(z \mid \neg \text { open }) P(\neg \text { open })}$
$P($ open $\mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67$
- z raises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_{2}.
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Conditional Independence

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

equivalent to

$$
P(x \mid z)=P(x \mid z, y)
$$

and

$$
P(y \mid z)=P(y \mid z, x)
$$

Bayes Rule
 with Background Knowledge

$$
\begin{array}{r}
P\left(x \mid z_{1}, z_{2}\right)=\frac{P\left(z_{1}, z_{2} \mid x\right) P(x)}{P\left(z_{1}, z_{2}\right)} \\
\quad=\frac{P\left(z_{2} \mid x, z_{1}\right) P\left(z_{1} \mid x\right) P(x)}{P\left(z_{2} \mid z_{1}\right) P\left(z_{1}\right)}
\end{array}
$$

$$
=\frac{P\left(z_{2} \mid x, z_{1}\right) P\left(x \mid z_{1}\right)}{P\left(z_{2} \mid z_{1}\right)}
$$

Recursive Bayesian Updating

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption: z_{n} is independent of z_{1}, \ldots, z_{n-1} if we know x.

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n}-1\right)}
$$

Example: Second Measurement

- $P\left(z_{2} \mid\right.$ open $)=0.5$

$$
P\left(z_{2} \mid \neg \text { open }\right)=0.6
$$

- $P\left(\right.$ open $\left.\mid z_{l}\right)=2 / 3$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{\left.\left.P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid\right\urcorner \text { open }\right) P(\urcorner \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
\end{aligned}
$$

- z_{2} lowers the probability that the door is open.

Actions

- Often the world is dynamic since
- actions carried out by the robot,
- actions carried out by other agents,
- or just the time passing by
change the world.
- How can we incorporate such actions?

Typical Actions

-The robot turns its wheels to move
-The robot uses its manipulator to grasp an object

- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

Stochastic Processes

- A function of time and some random experiment w :

$$
x(t)=x(t, w)
$$

- Mean of the stochastic process at t :

$$
\bar{x}(t)=E[x(t)]=\int_{-\infty}^{\infty} \xi p_{x(t)}(\xi) d \xi
$$

Properties of Stochastic Processes

-Autocorrelation:

$$
R\left(t_{1}, t_{2}\right)=E\left[x\left(t_{1}\right) x\left(t_{2}\right)\right]
$$

-Autocovariance:

$$
\begin{aligned}
V\left(t_{1}, t_{2}\right) & =E\left[\left(x\left(t_{1}\right)-\bar{x}\left(t_{1}\right)\right)\left(x\left(t_{2}\right)-\bar{x}\left(t_{2}\right)\right)\right] \\
& =R\left(t_{1}, t_{2}\right)-\bar{x}\left(t_{1}\right) \bar{x}\left(t_{2}\right)
\end{aligned}
$$

More Properties

- Stationary if for all $t_{1} \& t_{2}$:

$$
\begin{aligned}
E\left[t_{1}\right] & =E\left[t_{2}\right] \\
R\left(t_{1}, t_{2}\right) & =R\left(t_{1}-t_{2}\right)
\end{aligned}
$$

- Ergodic if stationary and:

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t=\bar{x}
$$

Random Walk

- Wiener-Levy or Brownian motion, steps of size s at intervals of Δ s.t.:

$$
\frac{s}{\sqrt{\Delta}} \rightarrow \sqrt{\alpha}
$$

- Produces stochastic process $w(t)$ with a Gaussian PDF:

$$
p(w(t))=N(w(t) ; 0, \alpha t)
$$

Markov Processes

-"The future is independent of the past if the present is known"

- Brownian motion is a Markov process as:

$$
w(t)=w\left(t_{1}\right)+\int_{t_{1}}^{t} n(\tau) d \tau
$$

-Also, LTI excited by stationary white noise

$$
\dot{x}(t)=A x(t)+B n(t)
$$

is a stationary Markov process.

Random Sequences

-Time-indexed sequence of random variables:

$$
X^{k}=\{x(j)\}_{j=1}^{k} \quad k=1,2, \ldots
$$

- A sequence is Markov if:

$$
p\left(x(k) \mid X^{j}\right)=p(x(k) \mid x(j))
$$

Markov Chains

-A Markov sequence in which state space is discrete and finite:

$$
x(k) \in\left\{x_{i}, i=1 \ldots n\right\}
$$

-With state transition probabilities:

$$
P\left\{x(k)=x_{j} \mid x(k-1)=x_{i}\right\}=\pi_{i j}
$$

More Markov Chains

- Vector of probabilities of being in each state:

$$
\begin{aligned}
u(k) & =\left[u_{1}(k), \ldots, u_{n}(k)\right] \\
u_{1}(k) & =P\left\{x(k)=x_{i}\right\}
\end{aligned}
$$

-Time evolution given by:

$$
u_{i}(k+1)=\sum_{j=1}^{n} \pi_{i j} u_{j}(k) \quad i=1 \ldots n
$$

Law of Large Numbers

- Sum of a large number of sufficiently uncorrelated random variables tends towards the expected value
- Given stationary random sequence x with:

$$
\lim _{|i-j| \rightarrow \infty} \rho(i-j)=0
$$

if correlation coefficients -> 0 "sufficiently fast", then

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]=\bar{x}
$$

Central Limit Theorem

- If a sequence consists of independent random variables, then the PDF of

$$
z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}
$$

will tend towards a Gaussian.

Modeling Actions

- To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

$$
P\left(x \mid u, x^{\prime}\right)
$$

- This term specifies the pdf that executing u changes the state from x^{\prime} to x.

Example: Closing the door

State Transitions

$P\left(x \mid u, x^{\prime}\right)$ for $u=$ "close door":

If the door is open, the action "close door" succeeds in 90% of all cases.

Integrating the Outcome of Actions

Continuous case:
$P(x \mid u)=\int P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right) d x^{\prime}$

Discrete case:

$$
P(x \mid u)=\sum P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right)
$$

Example: The Resulting Belief

$$
\begin{aligned}
P(\text { closed } \mid u)= & \sum P\left(\text { closed } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { closed } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { closed } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{9}{10} * \frac{5}{8}+\frac{1}{1} * \frac{3}{8}=\frac{15}{16} \\
P(\text { open } \mid u)= & \sum P\left(\text { open } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { open } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { open } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{1}{10} * \frac{5}{8}+\frac{0}{1} * \frac{3}{8}=\frac{1}{16} \\
= & 1-P(\text { closed } \mid u)
\end{aligned}
$$

Bayes Filters: Framework

-Given:

- Stream of observations z and action data u :

$$
d_{t}=\left\{u_{1}, z_{1} \ldots, u_{t}, z_{t}\right\}
$$

- Sensor model $P(z \mid x)$.
- Action model $P\left(x \mid u, x^{\prime}\right)$.
- Prior probability of the system state $P(x)$.
- Wanted:
- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
-Perfect model, no approximation errors

Bayes Filters

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

$$
\text { Bayes } \quad=\eta P\left(z_{t} \mid x_{t}, u_{1}, z_{1}, \ldots, u_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)
$$

$$
\text { Markov } \quad=\eta P\left(z_{t} \mid x_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)
$$

$$
\text { Total prob. }=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, x_{t-1}\right)
$$

$$
P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, z_{t-1}\right) d x_{t-1}
$$

$=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}$

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

1. Algorithm Bayes_filter($\operatorname{Bel}(x), d)$:
2. $\eta=0$
3. If d is a perceptual data item z then
4. For all x do
$\operatorname{Bel}^{\prime}(x)=P(z \mid x) \operatorname{Bel}(x)$
$\eta=\eta+\operatorname{Bel}^{\prime}(x)$
For all x do
$\operatorname{Bel}^{\prime}(x)=\eta^{-1} \operatorname{Bel}^{\prime}(x)$
5. Else if d is an action data item u then
6. For all x do
7.

$$
\operatorname{Bel}^{\prime}(x)=\int P\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) d x^{\prime}
$$

12. Return $\operatorname{Bel}^{\prime}(x)$

Bayes Filters are Common

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

- Kalman filters
- Particle filters
- Hidden Markov models
-Dynamic Bayesian networks
-Partially Observable Markov Decision Processes (POMDPs)

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

