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Reading Group Schedule
W1: Wed Apr 2 Probability Theory Joey 

W2: Wed Apr 9 Estimation Theory Kurt

W3: Wed Apr 16 Kalman Filters 

W4: Wed Apr 23 Particle Filters 

W5: Wed Apr 30 Motion & Sensor Models Paolo

W6: Wed May 7 Localization 

W7: Wed May 14 Mapping 

W8: Wed May 21 Simultaneous Localization & Mapping 

W9: Wed May 28 Markov Decision Processes Alexandre 

W10: Wed Jun 4 Data Association/Target Tracking 

Projector in room.

Presentation laptop available if needed, contact Joey.
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Outline

•Probability theory
•Probability density functions
•Gaussian random variables
•Conditional probability
•Bayes formula
•Stochastic processes
•Markov processes and chains
•Bayes filters
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Motivation

Key idea: 
Explicit representation of uncertainty 
using the calculus of probability theory

• Perception = state estimation
• Action = utility optimization
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Pr(A) denotes probability that proposition A is true. 
Let S be the set of all possible outcomes.

•  

•
 

•  

Axioms of Probability Theory

1)Pr(0 ≤≤ A

1)Pr( =S

)Pr()Pr()Pr()Pr( BABABA ∧−+=∨

0)Pr( =∅
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A Closer Look at Axiom 3

B

BA ∧A B
True

)Pr()Pr()Pr()Pr( BABABA ∧−+=∨
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Using the Axioms
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0)Pr()Pr(1

)Pr()Pr()Pr()Pr(
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Discrete Random Variables

•X denotes a random variable.

•X can take on a countable number of values 
in {x1, x2, …, xn}.

•P(X=xi), or P(xi), is the probability that the 
random variable X takes on value xi. 

•P(*) is called probability mass function.

•A proper pmf satisfies: ∑ =
x

xP 1)(
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Continuous Random Variables

•X takes on values in the continuum.

•p(X=x), or p(x), is a probability density 
function.

•E.g.

∫=∈
b

a

dxxpbax )()),(Pr(

x

p(x)
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Properties of PDFs

•Normalization property

•Example:  Uniform random variable

1)( =∫
∞

∞−

dxxp

p  x={ 1
b−a

x∈[a ,b]

0 elsewhere}
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Expectations and Moments

•Expectation value of a scalar random 
variable (aka mean or average):

•nth moment:

xdxxxpxE == ∫
∞

∞−

)(][

∫
∞

∞−

= dxxpxxE nn )(][
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Variance

•The 2nd central moment is also known as the 
variance:

•The square root of the variance, σ, is also 
called the standard deviation.

∫
∞

∞−

−=−= dxxpxxxxEx )()(])[()var( 22

222 )(][)var( xxxEx σ=−=
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Joint Probability

•P(X=x and Y=y) = P(x,y)

•If X and Y are independent then 
P(x,y) = P(x) P(y)
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Covariance

•The covariance of two scalar random 
variables x and y:

2)])([(),cov( xyyyxxEyx σ=−−=
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Correlation

•The correlation coefficient between x and y:

•Because of normalization:

yx

xy
xy σσ

σ
ρ

2

=

1≤xyρ
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More on Correlation

•Uncorrelated:

•Linearly dependent:

][][][ yExExyE =

0=+ byax

1=xyρ

0=xyρ
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Joint and Marginal PDFs

•Marginal PDF for one random variable:

•If a set of random variables are 
independent, their joint PDF satisfies:

∫
∞

∞−

= dyyxpxp ),()(

)()(),( ypxpyxp =
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Random Vectors

•Vector-valued random variable:

•Expectation value of x:

•The covariance matrix of x:

][ 1 nxxx =

xdxdxxxpxE n == ∫∫
∞

∞−

∞

∞−

 1)(][

xxPxxxxEx =−−= ])')([()cov(
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Characteristic Function
•The characteristic function of x is the n-
dimensional Fourier transform of its PDF:

•The moments of x can be found using 
gradients of  Mx, eg:

•Characteristic function = moment 
generating function.

∫
∞

∞−

== dxxpeeEsM xsxs
x )(][)( ''

0|)(][ =∇= sxs sMxE
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Gaussian distributions

•The PDF of a Gaussian or normal random 
variable:

     scalar:

     vector:

•Has a mean of E[x] and a variance of σ2.

2

2

2
)(
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1),;()( σ

σπ
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Joint Gaussians

•To variables x and z are jointly Gaussian if:

     

•The mean and covariance of y:
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Conditional Gaussians

•The conditional PDF for x given z:

     

•The conditional mean and covariance of x 
given z:

)(
),()|(

zp
zxpzxp =

)(]|[ 1 zzPPxzxE zzxz −+= −

zxzzxzxx PPPPzx 1)|cov( −−=
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Mixture PDFs

•A mixture PDF is a weighted sum of PDFs:

•Mean and covariance of a mixture:

∑
=

=
n
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Conditional Probability
•P(x | y) is the probability of x given y

P(x | y) = P(x,y) / P(y)
P(x,y)   = P(x | y) P(y)

•If X and Y are independent then
P(x | y) = P(x)

•The same rules hold for PDFs:
p(x | y) = p(x,y) / p(y)
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Conditional Expectation
•Conditional expectation, expectation with 
respect to a conditional PDF:

•Law of iterated expectations:

∫
∞

∞−

= dxzxxpzxE )|(]|[

][]]|[[ xEzxEE =
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Total Probability Theorem

∑=
y

yxPxP ),()(

∑=
y

yPyxPxP )()|()(

∑ =
x

xP 1)(

Discrete case

∫ = 1)( dxxp

Continuous case

∫= dyypyxpxp )()|()(

∫= dyyxpxp ),()(



27

Bayes Formula

evidence
prior likelihood

)(
)()|()(

)()|()()|(),(

⋅==

⇒

==

yP
xPxyPyxP

xPxyPyPyxPyxP
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Simple Example of State Estimation

•Suppose a robot obtains measurement z
•What is P(open|z)?
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Causal vs. Diagnostic Reasoning

•P(open|z) is diagnostic.
•P(z|open) is causal.
•Often causal knowledge is easier to 
obtain.
•Bayes rule allows us to use causal 
knowledge:

)(
)()|()|( zP

openPopenzPzopenP =
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Example

• P(z|open) = 0.6 P(z|¬open) = 0.3
• P(open) = P(¬open) = 0.5

67.0
3
2

5.03.05.06.0
5.06.0)|(

)()|()()|(
)()|()|(

==
⋅+⋅

⋅=

¬¬+
=

zopenP

openPopenzPopenPopenzP
openPopenzPzopenP

• z raises the probability that the door is open.



31

Combining Evidence

•Suppose our robot obtains another 
observation z2.

•How can we integrate this new 
information?

•More generally, how can we estimate
P(x| z1...zn )?
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Conditional Independence

)|()|(),( zyPzxPzyxP =

),|()( yzxPzxP =

),|()( xzyPzyP =

equivalent to
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Bayes Rule 
with Background Knowledge
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Recursive Bayesian Updating

),,|(
),,|(),,,|(),,|(

11

1111
1

−

−−=
nn

nnn
n

zzzP
zzxPzzxzPzzxP




Markov assumption: zn is independent of z1,...,zn-1 if 
we know x.
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Example: Second Measurement 

• P(z2|open) = 0.5 P(z2|¬open) = 0.6

• P(open|z1)=2/3

625.0
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1
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zopenPopenzPzopenPopenzP
zopenPopenzPzzopenP

• z2 lowers the probability that the door is open.
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Actions

•Often the world is dynamic since
• actions carried out by the robot,
• actions carried out by other agents,
• or just the time passing by
change the world.

•How can we incorporate such 
actions?
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Typical Actions

•The robot turns its wheels to move
•The robot uses its manipulator to grasp 
an object
•Plants grow over time…

•Actions are never carried out with 
absolute certainty.
•In contrast to measurements, actions 
generally increase the uncertainty. 
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Stochastic Processes

•A function of time and some random 
experiment w:

•Mean of the stochastic process at t:

∫
∞

∞−

== ξξξ dptxEtx tx )()]([)( )(

),()( wtxtx =
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Properties of Stochastic Processes

•Autocorrelation:

•Autocovariance:

)]()([),( 2121 txtxEttR =

( ) ( )[ ]
)()(),(

)()()()(),(

2121

221121

txtxttR

txtxtxtxEttV

−=

−−=
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More Properties

•Stationary if for all t1 & t2:

•Ergodic if stationary and:

)(),( 2121 ttRttR −=

xdttx
T

T

T

T
=∫

−

∞→
)(

2
1lim

][][ 21 tEtE =
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Random Walk

•Wiener-Levy or Brownian motion, steps of 
size s at intervals of Δ s.t.:

•Produces stochastic process w(t) with a 
Gaussian PDF:

α→
∆
s

),0);(())(( ttwNtwp α=
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Markov Processes

•“The future is independent of the past if the 
present is known”
•Brownian motion is a Markov process as:

•Also, LTI excited by stationary white noise

is a stationary Markov process.

∫+=

t

t

dntwtw
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)()()( 1 ττ
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Random Sequences

•Time-indexed sequence of random 
variables:

•A sequence is Markov if:

{ } ,2,1)( 1 == = kjxX k
j

k

))(|)(()|)(( jxkxpXkxp j =
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Markov Chains

•A Markov sequence in which state space is 
discrete and finite:

•With state transition probabilities:

open closed0.1 1
0.9

0

ijij xkxxkxP π==−= })1(|)({

{ }nixkx i 1,)( =∈
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More Markov Chains

•Vector of probabilities of being in each 
state:

•Time evolution given by:
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Law of Large Numbers

•Sum of a large number of sufficiently 
uncorrelated random variables tends towards 
the expected value
•Given stationary random sequence x with:

if correlation coefficients -> 0 “sufficiently 
fast”, then

0)(lim
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Central Limit Theorem

•If a sequence consists of independent 
random variables, then the PDF of

will tend towards a Gaussian.

∑
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=
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Modeling Actions

•To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf 

P(x|u,x’)

•This term specifies the pdf that 
executing u changes the state 
from x’ to x.
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Example: Closing the door
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State Transitions

P(x|u,x’) for u = “close door”:

If the door is open, the action “close 
door” succeeds in 90% of all cases.

open closed0.1 1
0.9

0
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Integrating the Outcome of Actions

∫= ')'()',|()|( dxxPxuxPuxP

∑= )'()',|()|( xPxuxPuxP

Continuous case:

Discrete case:
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Example: The Resulting Belief
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Bayes Filters: Framework

•Given:
• Stream of observations z and action data u:

• Sensor model P(z|x).
• Action model P(x|u,x’).
• Prior probability of the system state P(x).

•Wanted: 
• Estimate of the state X of a dynamical system.
• The posterior of the state is also called Belief:

),,,|()( 11 tttt zuzuxPxBel =

},,,{ 11 ttt zuzud =
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Markov Assumption

Underlying Assumptions
•Static world
•Independent noise
•Perfect model, no approximation errors

),|(),,|( 1:1:11:1 ttttttt uxxpuzxxp −− =
)|(),,|( :1:1:0 tttttt xzpuzxzp =
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111 )(),|()|( −−−∫= ttttttt dxxBelxuxPxzPη

Bayes Filters

),,,|(),,,,|( 1111 ttttt uzuxPuzuxzP η=Bayes

z  = observation
u  = action
x  = state

),,,|()( 11 tttt zuzuxPxBel =

Markov ),,,|()|( 11 tttt uzuxPxzP η=

Markov
11111 ),,,|(),|()|( −−−∫= tttttttt dxuzuxPxuxPxzP η
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Bayes Filter Algorithm 

1.  Algorithm Bayes_filter( Bel(x),d ):
2.  η=0

3.  If d is a perceptual data item z then
4.      For all x do
5.  
6.  
7.      For all x do
8.  

9.  Else if d is an action data item u then
10.      For all x do
11.  

12.  Return Bel’(x)      

)()|()(' xBelxzPxBel =
)(' xBel+= ηη

)(')(' 1 xBelxBel −= η

')'()',|()(' dxxBelxuxPxBel ∫=

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η
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Bayes Filters are Common

•Kalman filters
•Particle filters
•Hidden Markov models
•Dynamic Bayesian networks
•Partially Observable Markov Decision 
Processes (POMDPs)

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η
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Summary

•Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise.

•Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence.

•Bayes filters are a probabilistic tool for 
estimating the state of dynamic 
systems.


